
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  13 ( 1 9 7 8 )  1 7 3 - - 1 7 7  

Shrinkage stresses 
composites 
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A simple model has been used to calculate the residual stresses in polyester-resin/glass 
fibre composites that arise when the material is cooled from the post-curing temperature. 
An elementary elasticity solution for shrink-fit stresses gives a value of the order of 
24 MNm -2 for interfacial pressures in a single fibre model, and it appears that this stress is 
between 10 and 20% lower if the matrix is a hypothetical material having the properties 
of a composite. The pull-out stress for a glass fibre in polyester resin is estimated to be 
7.6 MNm -2, in good agreement with earlier experimental results. 

1. Introduction 
It has been suggested that in glass-fibre reinforced 
plastics and carbon-fibre reinforced plastics the 
work required to pull broken fibres from the 
matrix after the resin has cracked contributes sub- 
stantially to the total fracture energy of these 
composites [1, 2]. It should therefore be possible 
to estimate the fracture energy if the work re- 
quired to pull a single fibre from the resin is 
known. In principle, it should also be possible to 
estimate this work from a knowledge of the 
gripping force exerted by the resin on the fibre. 
Attempts have been made to calculate the stress 
distributions round fibres resulting from thermal 
contraction following cooling from the curing tem- 
perature [3, 4] and there have also been some 
experimental studies [5, 6]. In reviewing this work 
Chamis [7] showed that there is some disagree- 
ment between experimental and theoretical results. 
t have therefore attempted to reassess, on the basis 
of an extremely simple model, both the magnitude 
of the frictional bond strength ha glass/polyester 
composites and the extent to which the estimated 
values agree with experimental results reported 
by Harris et  al. [ 1 ]. 

The initial model used is that of an isolated 
glass fibre ha a resin matrix. It is assumed that 
cure-contraction stresses are relieved during post- 
curing of the composite at 100 ~ C and that residual 
stresses develop as a result of cooling from the 
post-curing temperature (AT = 80 ~ C). The radial 
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T A B L E I Properties of glass and polyester resin 

Property Symbol and Glass Resin 
units 

Young's modulus E(GNm -~) 70 3.5 
Poisson's ratio v 0.21 0.25 
Linear coefficient a(10 -s ~ C-: ) 1 10 
of thermal expansion 

interfacial pressure is given by elementary elasticity 
theory. The properties of constituent materials 
used in calculation are shown in Table I. The sub- 
scripts m and f are used to refer to matrix and 
fibre, respectively. 

The second stage is to assume that the fibre is 
embedded in a matrix not of plain resin but of  a 
hypothetical material ha:Sng the properties of a 
composite. In this way the effect of matrix pro- 
perties on interracial pressure is determined al- 
though fibre-fibre interactions are ignored. To do 
this we assume that the matrix is a pseudo- 
homogeneous material having the fibre volume 
fraction Vf and we roughly estimate the properties 
of the "matrix" by using mixture-rule relation- 
ships for expansion coefficient and Poisson's ratio: 

t 

am = a~Vf + ~m(1  - -  V~) 

t 

v =  = vm v~ + ~m(1 - re)  

and a form of iso-stress relationship for Young's 
modulus: 

,z~ = {vf /~f  + (: - V b / E m } - '  
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TABLE II Properties of pseudo-homogeneous matrix 

Vf E' am v m 
(GNm -2) (10 -s o C-~ ) 

0 3.50 10 0.250 
20 4.32 8.2 0.242 
30 4.90 7.3 0.238 
40 5.65 6.4 0.234 
50 6.67 5.5 0.230 
60 8.14 4.6 0.226 
70 10.45 3.7 0.222 

The primed symbols indicate that they refer to a 
"modif ied"  matrix.  Table II shows the properties 
of  the modified matr ix as a function of  filler con- 
tent  calculated in this way. 

2. Fibres in a resin matrix 
A rough estimate of  the lateral interfacial pressure 
when a single, infinitely-rigid fibre is embedded in 
resin is given by  

p ~ E m A T A a  

or 25.2MNm -2, but  for a glass fibre the real 
pressure will be lower than this. The lateral pressure 
developed when the resin contracts laterally onto 
the fibre during cooling can be obtained by  the 
elementary elasticity approach used for calculating 

shrink-fits [8] which gives the pressure, p,  referring 
to Fig. 1, from the expression 

sic 

Em(1 --c2/b 2 ) 
{(1 --Vm)c~/b 2 + (1 + Vm) } + - -  

(1 - -  vf)  

Ef 
(1) 

In this equation 3 is the difference between the 
radial displacements o f  the fibre and matr ix 

surfaces at the interface radius, c, i.e. the amount 
by which the room-temperature radius of  the fibre 
exceeds the bore radius of the hole that would 
have been left in the resin had the fibre not  been 
present. 5 is calculated in the following way. Let 

re be the radius o f  the fibre at room-temperature 
and rm be the radius at room temperature of  the 
resin hole that was created at 100 ~ C by  a fibre of  
radius r~ (1 + c~fAT). For  a notional 0.3 mm dia- 
meter  fibre (see Reference 1 for example) rf is 
thus 0.15 mm, the fibre radius at post-curing tem- 
perature is 0.15012 mm, and the resin hole radius 
(with the fibre n o t  present) after cooling from the 
curing temperature would be 

0.15012 
r m - - -  0.14893mm. 

1 + a raAT  

Hence the relative displacement, 6, which i s  
( r e - - r m ) .  The effective shrink-fit strain in the 
numerator  of  Equation 1 is obtained by  dividing 
by the equilibrium radius, c, of  resin hole and fibre 
at 100~ ( c = 0 . 1 5 0 1 2 m m ) .  b in Equation 1 is 
simply the outer diameter of  the resin cylinder. 
From Equation 1 we obtain p as a function of  the 
ratio c/b for a single fibre embedded in resin, as 
shown in Fig. 2. The limiting thickness of  a resin 
block that will grip the fibre with maximum force 
is thus about twenty times the fibre diameter. By 
making the assumption now that the matr ix has 
the properties of  a composite,  as given in Table II, 

we can determine new values for ~ and so obtain 
the interfacial pressure as a function of  fibre 

vm. m  

Figure 1 Schematic illustration of geometric and physical 
parameters involved in calculating the shrinkage stress  in  a 
fibre/resin composite. The radial stress art, is equal to p at 
the interface and falls off with distance into the resin. 
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Figure 2 The interracial pressure as a function of the 
relative diameters of the matrix and fibre. The curve is the 
solution to Equation 1 and takes into account the fact 
that the fibre is compressed along its axis as well as 
laterally. 
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Figure 3 Interfacial pressure as a function of fibre volume 
fraction, assuming that the matrix is a pseudo- 
homogeneous material with the properties of a composite 
with volume fraction V s. In curve A the longitudinal 
shrinkage constraint is included in the calculation: in 
curve B the effect of this constraint is omitted. 

volume fraction for our artificial composite. The 
results, given in Fig. 3, show that p falls only 
slowly with V~ from the single fibre value of  19.05 
MNm -2 (for c / b = 0 . 1 )  to 17.37MNm -2 for a 
typical 70% glass fibre composite. For comparison 
the pressure exerted by the same resin on a single 
glass sphere can easily be shown to be 38.5 MNm -2 , 
and in a particulate composite with V~ = 0.50 this 
falls to 35.8 MNm -~ . 

Shrink-fit models used by engineers usually 
ignore longitudinal constraints and assume that the 
inner shaft and outer cylinder will slide over each 
other during cooling from the fitting temperature. 
In a composite the resin will adhere strongly to the 
glass at the post-curing temperature and will exert 
a strong axial compression when the composite is 
cold. Treating the lateral and longitudinal con- 
straints as separate and additive, we see that a 
single fibre will experience an axial compressive 
strain of  about 0.008, equivalent to a stress in the 
fibre of  556 MNm -2 . This is neatly half its tensile 
breaking stress and is clearly sufficient to cause 
elastic buckling of  the kind observed by Dow [9] 
and Arrington [10] if  the resin is sufficiently 
flexible. This axial stress causes a radial expansion 
of  the fibre of  about 0.17% and the strain function 
6/c in Equation 1 is increased by a factor ranging 
from 1.23 for the single fibre case to 1.29 for a 
70% fibre composite. The interfacial pressure for 
the single fibre model with axial constraint is 
therefore 23 .5MNm -2 (for c/b = 0 . 1 )  and the 
variation with fibre content is as shown in Fig. 3. 
From these results, therefore, we see that the cal- 

culated values of  interfacial pressure are not likely 
to be strongly sensitive to matrix properties be- 
cause of  the inter-relationship between elastic 
modulus, Poisson's ratio, and expansion coefficient. 
For the same reason they are not greatly affected 
by the crudeness of  the relationships used to 
estimate Era, v m and am. This insensitivity to 
materials properties (other than the large matrix 
shrinkage) is also reflected in estimated values of  
p for carbon-fibre/resin systems. I f  we take a 
zero expansion coefficient for carbon fibres and 
estimate p for a single fibre in polyester resin, 
ignoring the axial constraint, we obtain values of  
21.65 and 21.54MNm -2 for types I and II carbon 
fibre whose moduli are roughly 400 and 
2 0 0 G N m  -2, respectively. For a composite with 
50% of  type I carbon fibres this figure is reduced 
only slightly to 21.18MNm -2. For boron fibres, 
with a modulus of about 400 GNm -2 and an ex- 
pansion coefficient of  1.6 x 10 -6, we expect 
similar values. These are only 10% or so higher 
than the figure for glass/polyester. 

3. Discussion and conclusions 
The values of  interfacial pressure calculated here 
are substantially greater than those usually quoted. 
Daniel and Durelli [5] for example, report 
measured values of  4.9 MNm -2 . Haener et al. [3] 
used classical elasticity methods to investigate 
microresidual stresses round fibres for a model 
with V~ = 0.64 in which the matrix was assumed 
to shrink by 1% on cooling while the fibres did not 
shrink at all. They found that the radial pressure 
acting on one fibre varies with position relative to 
the other nearby fibres. For a composite with hex- 
agonal symmetry (Fig. 4) and a modulus ratio, 

Figure 4 Hexagonal symmetry of composite model used 
in the calculations of Haener et al. [3] and Chamis [41. 
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Figure 5 Steps in the propagation 
of a crack past a fibre. 

Ef/Em, of about 26, their results indicate that 
the compressive radial stress is about 17.5 MNm -2 
along close-packed directions (0 ~ but that it falls 
to zero at about 20 ~ and, changing sign, becomes 
a tensile stress of about 5 MNm -2 at 30 ~ Similar 
results have also been reported by Owen [11]. 
Variations of this kind in interfacial pressure 
would seem to imply that good bonding can never 
be achiever, in high modulus fibre composites, for 
with such a stress distribution there must always 
be either a real or an incipient debond. It seems 
unlikely that this could be so, however, in view of 
all the available visual evidence of failure surfaces 
in composites. 

When composites are loaded so that fibres 
break inside the resin away from a major resin 
crack, large quantities of work may be required to 
pull the broken fibre ends out of the matrix. This 
work is done in overcoming the frictional drag 
resulting from the shrinkage grip of  resin on fibre. 
The sequence of events prior to pull-out may be 
something along the following lines (Fig. 5): 

(i) A major resin crack moves through the com- 
posite. Its progress is hindered by fibres which, 
with their higher elastic rigidity, prevent the crack- 
opening displacement (cod) from reaching a critical 
level. 

(ii) Relative shear between fibre and resin aids 
debonding and the cod increases, allowing further 
extension of the resin crack. Debonding is a pro- 
cess which may or may not involve breaking of 
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chemical bonds, but which certainly releases the 
locked-in longitudinal shrinkage constraint dis- 
cussed earlier. Some work is done when the relative 
shear displacement occurs because the lateral 
shrinkage pressure is still present. 

(iii) The fibre breaks within the debonded 
region and is subsequently pulled out of the resin 
against the frictional shrinkage grip. 

For the case of model double cantilever beam 
samples used by Harris et  al. [1] we may assume 
Vf ~ 0. In loading up these samples, then, first 
signs of debonding should occur when the fibre 
stress is/zp. We do not know the exact value of the 
friction coefficient, /2, for a fresh glass surface 
against a fresh, cast resin counterface, but if we 
take the value of 0.4 quoted in handbooks for 
hard glassy polymers and thermoset resins of  the 
epoxide and polyester types, we obtain #iv = 
9.4 MNm -~ . After fibre failure the work required 
to overcome the frictional grip with axial con- 
straint relaxed will be about 20% lower than this, 
or 7.6 MNm -2. This value is in good agreement 
with the measured values of 6MNm -2 and 
8.6 MNm -2 quoted by Harris et  al. for clean fibres 
and silane coated fibres, respectively. These values 
refer however to the initial friction stress operating 
at the onset of pull-out, and the experimental 
evidence in their paper suggests that interface con- 
ditions may change drastically during the pull-out 
process. The value for p reported by Daniel and 
Durelli and the calculated values of Haener et  al. 



(averaged out over all orientations) would not  give 

satisfactory agreement with experimental friction 

stress results. 
In conclusion, since the release of axial shrinkage 

stress results in a substantial reduction of the 

frictional force between fibre and matrix, the de- 

bonding process may be an even smaller con- 
tributor to total fracture energy than is often 

supposed [12].  And an inference from the model 
of crack propagation proposed above is that the 

Cook and Gordon mechanism of crack inhibition 
[ 13], originally postulated for laminated structures, 

could not  work in polyester/glass fibre composites 
because axial cracking (debonding) is essential if 

crack extension is to occur. 
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